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We use a particle-in-cell simulation to study the propagation of localized structures in a

magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition

for the simulation an envelope soliton solution of the nonlinear Schr€odinger equation, derived from

the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out

not to be a stable solution for the simulation and splits in two localized structures propagating in

opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they

keep their profile after they collide with each other due to the periodic boundary conditions. We

also observe the formation of localized structures in the evolution of a spatially uniform circularly

polarized Alfv�en wave. In both cases, the localized structures propagate with an amplitude

independent velocity. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930266]

I. INTRODUCTION

The study of wave propagation in relativistic electron-

positron plasmas is of importance to understand various

processes that take place in several environments such as

accretion disks,1–3 pulsar magnetospheres,4,5 early uni-

verse,6,7 ultra-intense lasers,8,9 and laboratory and tokamak

plasmas,10,11 among others. Relativistic effects introduce

several sources of nonlinearity, which must be considered to

properly model the plasma in these cases: large quiver veloc-

ities of particles in the wave field; very large temperatures;

and large wave amplitudes. These nonlinear effects modify

the propagation characteristics of electrostatic and electro-

magnetic waves. A number of authors have studied the

nonlinear wave propagation in relativistic plasmas. In the

unmagnetized case, Chian and Kennel12 studied the self-

modulation instability of strong electromagnetic waves in

electron-positron plasmas, excited by the mass variation of

particles induced by the wave intensity. This instability can

give rise to soliton solutions, which has been proposed as a

mechanism to explain the microstructure of pulsar radio

pulses. Multiple discussions about the existence of electro-

static solitons in unmagnetized pair plasmas have been

carried out in the recent years.13,14 Numerical simulations

have been used as a tool to study the soliton formation and

propagation in unmagnetized electron-ion plasmas with

particle-in-cell (PIC)15,16 and Vlasov codes.17 The same

techniques have been used to analyze the evolution of

electrostatic solitons in unmagnetized pair plasmas.18–20

It is important to mention that in many astrophysical and

laboratory settings, where we have relativistic electron-

positron plasmas, the presence of the magnetic field is funda-

mental for their evolution. Hence, several authors have

improved the model proposed by Chian and Kennel12 to

include effects that were not considered originally as, the

presence of external magnetic fields, ponderomotive force,

or ions species, among others.21–25 In particular, for weakly

and strongly magnetized plasmas, it has been shown that the

necessary condition for the existence of a modulational insta-

bility and the appearance of soliton solutions is fulfilled.26,27

In these papers, Asenjo et al.26 and L�opez et al.27 studied the

self-modulation of a nonlinear Alfv�en wave propagating

along an ambient magnetic field in a weakly and strongly

magnetized electron-positron plasma with fully relativistic

temperatures, respectively. Nonlinear Schr€odinger (NLS)

equations were derived, which produces either a propagating

wave train or an envelope soliton, depending on initial con-

ditions. All of this in the context of a relativistic two fluid

model. Hence, these soliton solutions are obtained from an

approximation to the two fluid relativistic theory, but it

remained to be seen if they survive in a fully nonlinear ki-

netic treatment. One of the aims of this paper is to study the

existence of electromagnetic localized structures in relativis-

tic magnetized thermal pair plasmas by using a fully relativ-

istic PIC simulation. In this respect, we will see below that

the long term evolution of an initial condition composed of a

spatially uniform large amplitude circularly polarized wave

will naturally evolve into propagating localized structures

that resemble solitons. Hence, it becomes natural to study

the stability and spatio-temporal evolution of the two fluid

soliton solution for strongly magnetized plasmas found in

Ref. 27, using it as initial condition for fields and particle

velocities in a PIC simulation. Although we do not in general

expect that this solution will be a perfect solitary wave in the

PIC simulation because it corresponds to a solution of a two

fluid relativistic thermal plasma model, it does give a simple

initial condition with which we can start the simulation to
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check if these localized structures evolve as such, as was

done previously with MHD28 and hybrid29 codes. The PIC

simulation we use in the current manuscript was previously

used to study the parametric decays of a circularly polarized

wave, the linear dispersion relation, and the thermally

induced electromagnetic fluctuations in relativistic electron-

positron plasmas,30–32 showing a very good agreement

between theory and simulation results. We will show that, as

expected, the two-fluid soliton solutions do not behave as

such in a fully relativistic PIC simulation. However, when

the two-fluid solitons are used as an initial condition for the

PIC simulation, they do evolve into localized stable struc-

tures that have many of the soliton properties. In this manu-

script, we characterize the properties of these localized

solitary structures that are fully nonlinear solutions to the

fully relativistic PIC simulation.

We concentrate on relativistic electron-positron plasmas

with finite temperature, to study situations where relativistic

effects under strong magnetic fields are relevant, such as the

propagation of radio emissions through pulsar magneto-

spheres,5 the bulk acceleration or relativistic jets,33 or the

emissions in quasar relativistic jets,34 among others.

This paper is organized as follows. In Sec. II, the circu-

larly polarized wave and the envelope soliton solution of the

nonlinear Schr€odinger equation in a strongly magnetized

electron-positron plasma, derived in Ref. 27, are presented.

In Sec. III, the particle-in-cell simulation is described. In

Sec. IV, we study the propagation of a circularly polarized

electromagnetic wave and in Sec. V we study the propaga-

tion of the envelope soliton. Finally, in Sec. VI, our results

are summarized.

II. SOLITON TWO FLUID SOLUTION

Using a relativistic two fluid model, Asenjo et al.35 stud-

ied the evolution of a circularly polarized wave propagating

along a constant background magnetic field in an electron-

positron plasma, given by

~A ¼ a0½cosðkz� xtÞx̂ þ sinðkz� xtÞŷ�; (1)

where ~A is the vector potential and a0 ¼ jAj is its amplitude,

x is the frequency, and k is the wave number. The back-

ground magnetic field is set in the ẑ direction. In Ref. 35, the

exact dispersion relation for this circularly polarized wave

was calculated, obtaining

x2 � c2k2 ¼ �
x2

pe

c
ffiffiffi
k
p

a0

vp � veð Þ; (2)

where the purely transverse velocities induced by the wave

are

vj

c
¼ gj

ea0

mc2

x
fjcjxþ gjXc

� �
ei kz�xtð Þ: (3)

Here, j is the species index (j¼ e for electrons and j¼ p
for positrons); ge ¼ 1; gp ¼ �1; xpe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pne2=m

p
and

Xc ¼ eB0=ðmcÞ are the plasma and cyclotron frequencies,

respectively; n is the number density; e is the positron

charge; m is the electron mass; and B0 is the background

magnetic field. k ¼ e2=ðm2c4Þ; cj ¼ ð1� v2
j =c2Þ�1=2

is the

relativistic Lorentz factor; f is a thermal factor for a relativis-

tic thermal ideal gas, which is related to the temperature by

f ¼ K3ðlÞ=K2ðlÞ,36 where l ¼ mc2=kBT; T is the plasma

temperature; and K2 and K3 are the modified Bessel func-

tions of order 2 and 3, respectively. The dispersion relation

is obtained by solving Eqs. (2) and (3) simultaneously. Two

branches can be obtained from this dispersion relation, the

electromagnetic ordinary branch and the Alfv�en branch.

In Ref. 37, the parametric decays for this circularly

wave were studied. Various types of instabilities were

described, namely, decay, beat, and modulational. In Ref.

27, the modulational instability of an Alfv�en wave was

studied in the strongly magnetized limit. This limit is charac-

terized by the low-frequency regime x� Xc. In this limit,

the purely transverse velocities of Eq. (3) become

vj

c
¼

ffiffiffi
k
p

a0

x
Xc

1� gj þ
fx
Xc

� �
fx
Xc

� �
�

gj

2
a0f 2f 2 þ ka2

0

� �x4

X4
c

þ
ffiffiffi
k
p

a0f 2 f 2 þ 2ka2
0

� �x5

X5
c

: (4)

Using these velocities, the dispersion relation for the strongly

magnetized limit is

x2 � c2k2 þ
x2

pe

X2
c

fx2 2þ x2

X2
c

2f þ ka2
0

� �" #
¼ 0: (5)

The modulational instability in the strongly magnetized limit

was studied by means of a nonlinear Schr€odinger equation,

showing that the necessary condition for a modulational

instability is fulfilled.27 This modulational instability admits

an envelope soliton solution of the form

a z; tð Þ ¼ a0sech

ffiffiffiffiffiffiffiffi
Qa2

0

2P

r
z� Vtð Þ

" #
eig; (6)

where

P xð Þ ¼ c2

2x
; (7)

Q xð Þ ¼
x2

pe

4X4
c

f kx3; (8)

and

g ¼ V

2P
z� V2

4P
þ Qa2

0

2

� �
t:

Here, V is the effective group velocity of the wave

packet.38 The total vector potential is written as

~A ¼ 1

2
a z; tð Þe�ixtĥ þ a z; tð Þ�eixtĥ

�
h i

; (9)

where ĥ ¼ ðx̂ � iŷÞ=
ffiffiffi
2
p

, and the � corresponds to a complex

conjugate quantity. Hence, the electromagnetic wave corre-

sponds to a left-handed circularly polarized wave packet
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described by Eq. (6), which propagates with velocity V. For

a detailed derivation, see Ref. 27. We will use this soliton so-

lution as an initial condition in the PIC code described

below.

III. PARTICLE-IN-CELL SIMULATION

We perform a one dimensional relativistic full electro-

magnetic particle-in-cell simulation, in which we follow the

trajectories of a large group of macroparticles by solving the

relativistic equations of motion

d~u

dt
¼ q

m
~E þ ~u

cc
� ~B

� �
; (10)

d~x

dt
¼ ~u

c
; (11)

where ~u ¼ c~v is the relativistic momentum per unit mass,

c ¼ ð1þ j~uj2=c2Þ1=2
is the relativistic Lorentz factor, and ~E

and ~B are the electric and magnetic fields. We solve the

momentum equation of both electrons and positrons in a con-

sistent manner with the electromagnetic fields obtained from

Maxwell’s equations. Relativistic effects have been included

in the Lorentz equation for the particle momentum, Eq. (10),

and in their thermal motion, by considering a Maxwell-

J€uttner velocity distribution function for the initial

condition39

f uð Þ ¼ l
c3K2 lð Þ

exp �l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

c2

r !
: (12)

As explained below, an additional Lorenz boost must be

applied to introduce the bulk motion in the particle veloc-

ities. We have used a leapfrog scheme for the temporal

advance of the motion equations, which are solved using the

relativistic version of the Boris-Bunemman method.40–44

The electromagnetic fields are solved using a standard finite

difference method and advanced using a leapfrog scheme.42

We use a standard quadratic scheme, as described in Ref. 41,

to interpolate the initial bulk velocities at the particle posi-

tion. The same scheme is used to interpolate the fields, and

hence the forces, at the particle position, and the contribution

of the particles to the charge and current densities at the grid

points. We also have implemented a correction to the longi-

tudinal electric field based on Marder45 and Langdon.46

The simulation has only one spatial dimension z
and three velocity dimensions are retained. The spatial

boundary conditions are periodic and we set the background

magnetic field B0 in the z direction. The system spatial size

is L ¼ 1024xpe=c, the number of spatial grid points is

ng¼ 4096, and the time step used is xpeDt ¼ 0:01. We have

used 1000 particles of each species per grid cell. The same

simulation code has been used in the previous papers to

describe the parametric decays,30 the normal modes,31 and

the thermally induced fluctuations32 in magnetized relativis-

tic pair plasmas with finite temperatures. Good agreement

has been shown to occur between the analytical theories and

particle simulations.

IV. CIRCULARLY POLARIZED PUMP WAVE

In this section, we show the long term evolution of a

left-handed circularly polarized electromagnetic Alfv�en

wave by means of the fully relativistic PIC simulation

described in Sec. III. We start with the vector potential given

by Eq. (1) to set the initial condition for the electric and mag-

netic fields at each point in the grid. Frequency and wave

number are obtained from the dispersion relation (2), and the

spatially dependent bulk velocities are set from Eq. (3),

which are then interpolated to the actual positions of the par-

ticles by using the quadratic interpolation scheme described

above. The normalized wave number of the pump wave is

set to ck0=Xc ¼ 0:49 and the normalized frequency of the

pump wave, obtained by solving the dispersion relation (2),

is x=Xc ¼ 0:27. We also add a relativistic thermal velocity

for the particles, using a Lorentz transformation for the

addition of velocities, obtained from a Maxwell-J€uttner dis-

tribution, Eq. (12), with l¼ 100.39

This same configuration for the initial condition was

used in Ref. 30 to study the parametric decays of this

wave. In that reference, it is shown that, for l¼ 100 andffiffiffi
k
p

a0 ¼ 0:2, this left-handed circularly polarized wave prop-

agates parallel to the background magnetic field as expected.

Daughter waves from parametric processes begin to grow at

around xpet � 400, consistent with the linear analysis of

Ref. 37. The growth rates of the parametric instabilities

increase as the amplitude of the pump wave is increased, and

for larger growth rates these instabilities grow at earlier

times. In order to study the long term nonlinear evolution of

the pump wave described before, we set a relatively large

amplitude pump wave to
ffiffiffi
k
p

a0 ¼ 0:5. With this amplitude,

the growth of daughter waves starts very early in the simula-

tion and the parametric stage lasts for a short period, leading

to a fully nonlinear regime. Fig. 1 shows the spatio-temporal

evolution of the transverse magnetic fluctuations. We

observe that at xpet ¼ 0 the simulation starts with a spatially

uniform amplitude pump wave and at a very early time,

xpet � 100, waves propagating antiparallel to the back-

ground magnetic field begin to grow. As the simulation

evolves, the nonlinear effects become relevant and these

antiparallel waves form localized pulses around xpet � 300.

FIG. 1. Spatio-temporal evolution of the transverse magnetic field forffiffiffi
k
p

a0 ¼ 0:5, a¼ 1, and l¼ 100.
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It becomes clear that these pulses, which have different

amplitudes, propagate with the same and constant velocity,

vp=c � 0:53, which is already a non-intuitive result, since it

is expected, following our intuition about the NLS solitons,

that the velocity should be amplitude dependent.47

In Fig. 2, we show the spatial profile of the transverse

magnetic field for three different times. As mentioned

before, for xpet ¼ 0, we observe the spatially uniform ampli-

tude for the magnetic field in Fig. 2(a). Here, the dotted-blue

and dashed-red lines represent the Bx and By components of

the magnetic field, respectively. Figure 2(b) shows

xpet ¼ 1000, once the nonlinear effects are dominant and

the localized solutions have appeared. Here, we have labeled

some localized peaks in the magnetic field, which satisfy the

condition B=B0 > 0:45. By comparing Figs. 2(b) and 2(c),

all the localized structures propagate at constant velocity,

independent of their amplitude, as the distance between the

localized structures remains constant, maintaining their spa-

tial profile. This result shows that instabilities and nonlinear

effects cause the spatially uniform circularly polarized wave

to evolve as localized structures in the long-term behavior of

the plasma. Furthermore, it becomes of interest to study the

evolution of these localized structures at the individual level.

V. TWO FLUID SOLITON INITIAL CONDITION

In Section IV, we studied the evolution of the circularly

polarized wave described by Eqs. (1)–(3). We observed that

the instabilities and nonlinear effects lead to the formation of

localized structures in the long term evolution of the simula-

tion. In Ref. 27, the nonlinear evolution of this circularly

polarized wave, in the two fluid approximation, is studied in

the strongly magnetized regime. Taking a slowly time-

varying modulation of the wave envelope, a nonlinear

Schr€odinger equation was derived and a soliton solution was

found, as described in Sec. II. In order to study the fully

kinetic evolution of an initial two fluid soliton found in

Ref. 27, we set initial conditions of the simulation with the

definitions of Sec. II. The normalized amplitude used for the

vector potential is
ffiffiffi
k
p

a0 ¼ ea0=ðmc2Þ ¼ 0:5. We use Eq. (4)

to set the initial fluid velocities (consistent with the two fluid

soliton solution) in each grid point for each species. These

velocities are then interpolated to the actual positions of the

particles using the same quadratic scheme applied to the

charge and current densities.41 As described above, we also

add a relativistic thermal velocity for the particles, using a

Lorentz transformation for the addition of velocities,

obtained from a Maxwell-J€uttner distribution, Eq. (12), with

l¼ 100.39 We set the initial electric and magnetic fields for

the simulation from the soliton solution for the vector poten-

tial given by Eq. (9), which corresponds to a left-handed

circularly polarized wave. We have chosen an initial normal-

ized wave number ck=Xc ¼ 0:7, and using the approximate

dispersion relation for the strongly magnetized case, Eq. (5),

we calculate the normalized frequency of the initial wave

modulation as x=Xc ¼ 0:38. This frequency is very similar

to the one obtained with the exact dispersion relation (2).

Also, for the initial condition, Eq. (9), we have to choose a

value for the effective group velocity of the wave packet,

V/c. Fig. 3 shows the initial profile for the transverse mag-

netic field for
ffiffiffi
k
p

a0 ¼ 0:5; a ¼ xpe=Xc ¼ 1, l¼ 100, and

V=c ¼ 0:3.

We let the system evolve from this initial condition until

xpet ¼ 1310:72. As we have chosen an effective group

velocity of V=c ¼ 0:3 for the structure, it is expected to

propagate to the right. Fig. 4 shows the transverse magnetic

FIG. 2. Transverse magnetic field for
ffiffiffi
k
p

a0 ¼ 0:5, a¼ 1, and l¼ 100. (a)

xpet ¼ 0, (b) xpet ¼ 1000, (c) xpet ¼ 1299:8.

FIG. 3. Initial condition for the transverse magnetic field. Normalized mag-

netic field as a function of zxpe=c, for
ffiffiffi
k
p

a0 ¼ 0:5, a¼ 1, l¼ 100, and

V=c ¼ 0:3. Solid (black) line: transverse magnetic field B=B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y

q
=

B0. Dashed (red) line: Bx=B0. Dotted (blue) line: By=B0.
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field profile for three different times. Fig. 4(a) shows the

time xpet ¼ 249:9. Initially, the structure splits in two wave

packets propagating in opposite directions. The secondary

pulse, propagating to the left, has an amplitude comparable

to the amplitude of the principal pulse, propagating to the

right. Both pulses continue propagating as localized struc-

tures, keeping an almost constant profile. Given the periodic

boundary conditions, the pulse propagating to the left

reaches the origin and appears at the other end of the simula-

tion box, as it can be seen in Fig. 4(b) for xpet ¼ 600.

Because pulses propagate in opposite directions, they even-

tually collide, in this case at xpet � 900 (see Fig. 5). Fig.

4(c) shows the pulses profile at xpet ¼ 1150:7, once the col-

lision has already occurred. We can see that both pulses

propagate with the same profile they had before the collision,

as in Fig. 4(b), exhibiting a typical soliton-like behavior.

Therefore, the envelope soliton solution obtained from the

relativistic fluid model in the strongly magnetized limit does

not propagate as a single soliton-like solution in the simula-

tion. This is not surprising since we use an approximate two

fluid solution in a PIC simulation. The system evolves in

such a way that the envelope soliton splits in two pulses

propagating in opposite directions. These pulses seem to be

stable solutions of the system, since they propagate as local-

ized structures, with a constant velocity and spatial profile,

even after they collide with each other. This splitting of the

initial soliton has been reported in the previous works using

hybrid simulations and MHD equations for derivative non-

linear Schr€odinger (DNLS) solutions, in electron-ion plas-

mas;28,29 however, the authors do not allow the two

structures to interact. This soliton-like behavior is an inter-

esting result that appears in the PIC simulation and should

serve as a more realistic approximation to localized struc-

tures that are stable even under kinetic considerations.

Figure 5 shows the spatio-temporal evolution of the

transverse magnetic field B=B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y

q
=B0 in the xpet

vs. zxpe=c plane for
ffiffiffi
k
p

a0 ¼ 0:5, a¼ 1, l¼ 100, and several

group velocities V/c. The color palette shows the amplitude

of the normalized magnetic field. In Fig. 5(a), we show the

same case of Fig. 4, V=c ¼ 0:3. We can see clearly that the

FIG. 4. Temporal evolution of the magnetic field for
ffiffiffi
k
p

a0 ¼ 0:5, a¼ 1,

l¼ 100, and V=c ¼ 0:3. (a) xpet ¼ 249:9, (b) xpet ¼ 600, (c)

xpet ¼ 1150:7. Solid (black) line: transverse magnetic field B=B0. Dashed

(red) line: Bx=B0. Dotted (blue) line: By=B0. Arrows indicate the direction of

propagation.

FIG. 5. Spatio-temporal evolution of the transverse magnetic field forffiffiffi
k
p

a0 ¼ 0:5, a¼ 1, and l¼ 100. (a) V=c ¼ 0:3, (b) V=c ¼ 0:5, (c)

V=c ¼ 0:8.
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color in the two pulses remains almost equal during the

entire period of simulation, which means that the spatial pro-

file remains quite constant, even after they cross each other.

There is a variation in the amplitude of the pulses at the be-

ginning of the simulation and at xpet � 900, when the pulses

interact. From this figure, we can also see that both pulses

propagate at equal and constant velocities, approximately

vp=c � 0:56. This velocity does not match the effective

group velocity given in the initial condition, V=c. Although,

the amplitude of the localized structures is clearly different,

their propagating speed is the same, so that—as also seen in

Section IV—the commonly accepted view of an amplitude

dependent velocity does not apply for these localized struc-

tures, at least in the parameter region studied here. Figs. 5(b)

and 5(c) show the cases V=c ¼ 0:5 and V=c ¼ 0:8, respec-

tively. We note that as we increase the group velocity V/c in

the initial condition, the second pulse (propagating to the

left) decreases its amplitude, whereas the principal pulse

increases its amplitude.

We can see that there is a residual magnetic field fluctu-

ation in Fig. 5(a) at zxpe=c ¼ 250 during the entire simula-

tion. This residual magnetic field is located at the position of

the original structure, where it is separated in two pulses. For

larger group velocities, the residual magnetic fluctuations at

zxpe=c � 250 evolve into two localized structures that do

not propagate in space, as can be seen by the formation of

two vertical lines in Fig. 5(c).

Again from these figures, it is clear that the propagation

velocity of the pulses does not depend on the initial group

velocity, V/c. This parameter only affects the number of

modes within the initial wave packet. On the other hand, the

velocity of the localized structures decreases slightly with

temperature as can be seen in Fig. 6, where we show the

same case of Fig. 5(c), but for larger temperatures: l¼ 50 in

Fig. 5(a) and l¼ 10 in Fig. 5(b). As we increase the relativ-

istic temperature, the residual stationary structure observed

in Figs. 5(a)–5(c) and 6(a) is absorbed by the thermal noise.

VI. CONCLUSIONS

We have studied the long term evolution of a left-

handed spatially homogeneous circularly polarized Alfv�en

wave propagating parallel to the background magnetic field

in a relativistic electron-positron plasma with finite tempera-

tures, using a PIC code. We choose a large enough pump

wave amplitude to accentuate the nonlinear effects, but stay-

ing in the magnetized limit x=Xc < 1 regime. The evolution

of this parallel propagating wave leads to the formation of

localized pulses propagating antiparallel to the background

magnetic field, and with an amplitude independent velocity,

suggesting that this system supports soliton-like structures,

and that these localized structures seem to be the naturally

stable long term nonlinear solutions of the system, long after

the parametric perturbation evolves.

We have also studied the spatio-temporal evolution of

an initial envelope two fluid soliton solution of nonlinear

Schr€odinger equation derived from a relativistic two fluid

system, in a strongly magnetized (x� Xc) electron-positron

plasma with relativistic temperatures, using a full particle-in-

cell simulation. The initial condition for the envelope soliton

solution is set consistently with the transverse velocity for

each particle species. This solution turns out not to be stable

in the simulation, instead, the fluid envelope soliton splits

into two localized structures that propagate in opposite direc-

tions. Given the spatial periodic boundary conditions, at

some point, xpet � 900, these two pulses collide. After the

collision, the profile of the pulses remain almost unaffected,

which is a typical soliton-like behavior. Both pulses propa-

gate at the same velocity, vp=c � 0:56, despite the fact that

they have different amplitudes, which does not follow the

standard view of NLS-type solitons. Furthermore, this veloc-

ity does not depend on the initial effective group velocity

V/c, but it does depend on the temperature. The group veloc-

ity V does affect the relative amplitude of the pulses, with

the one propagating to the left being smaller when the effec-

tive group velocity is larger.

The initial two fluid envelope soliton solution is not

stable in the simulation, which is not strange if we note that

the solution is an approximate result in the strongly magne-

tized regime, in the context of a relativistic two fluid theory,

and we would not, necessarily, expect it to be an exact solu-

tion of the fully kinetic system. However, we note that by

evolving this initial condition, the system leads to the

formation of localized structures propagating with constant

velocity and profile, independent of their amplitude, even

after they collide each other (as the periodic boundary

condition allows the encounter of the structures). This

behavior suggests that the long term evolution of relativistic

electron-positron plasmas includes stable localized

structures.

FIG. 6. Spatio-temporal evolution of the transverse magnetic field forffiffiffi
k
p

a0 ¼ 0:5, a¼ 1, and V=c ¼ 0:8. (a) l¼ 50 and (b) l¼ 10.
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These results may be relevant in the study of electro-

magnetic waves propagation in environments where

electron-positron plasmas and strong magnetic fields are im-

portant, such as the wave propagation in pulsar magneto-

spheres,5 relativistic jets,33 and quasars,34 among others.
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